
Journul of Chromatograph?,, 256 (1983) l-1 5 

Elsevier Scientific Publishing Company, Amsterdam Printed in The Netherlands 

CHROM. 15,379 

THERMAL CONDUCTIVITY DETECTOR: THEORY AND NUMERICAL 
MODEL 

GREGORY WELLS* and RICHARD SIMON 

Varian Instrument Group, Walnut Creek Divisiotl, Walnut Creek, CA 94598 i U.S.A.) 

(Received August l&h, 1982) 

SUMMARY 

A numerical model of all significant heat loss terms for a thermal conductivity 
detector has been developed and found to be in good agreement with theory. The 
sensitivity for the constant current, voltage and mean temperature modes has been 
shown to be equivalent at low sample concentrations. The constant temperature mode 
has been shown to have a higher sensitivity by a factor of 7-10, but an analysis of 
noise sources implies that the detectivity and signal-to-noise ratio are, at best, the 
same. The factors affecting the linear response at high concentrations in the four 
modes of operation have been investigated. The increased heat loss due to conduction 
through the ends of the filament, at high sample concentrations, has been found to 
improve the linear response in the constant current and voltage modes. 

INTRODUCTION 

Thermal conductivity detectors have been used since the beginning of gas 
chromatography. Numerous papers have been published describing and comparing 
the various modes of operation: constant voltage, constant current’“, constant tem- 
perature4 and constant mean temperature 5*6 Most of the work has been focused in . 
the low sample concentration range where the response is linear, and where heat loss 
mechanisms other than thermal conductivity are constant. In this work, the effects of 
conduction, radiation and mass transport on the response of a thermal conductivity 
detector operating in these various modes have been explored. In particular these 
effects in the high concentration range have been examined. 

SENSITIVITY FOR CONSTANT VOLTAGE. CURRENT AND MEAN TEMPERATURE OPER- 

ATION 

Consider a filament whose resistance at temperature f = 0°C is R, and through 
which passes a current i. The heat balance equation is given by 

i2 4 (1 + 20 = Q,,, + Q,, + Q,, (1) 
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Fig. I. Constant current and voltage bridge configuration. 

Dividing eiqn. 6 by eqn. 7, cross-multiplying and neglecting all terms of higher order 
than one, we obtain 

(% + sa- (1 + rt)J, + CtJ, (t - t,)] = (1 + rt) (-SJ) (t - t,) (8) 

SJ (l+at) GH m + w = J, (t - t,) (1 + crt,) 

The quantity H on the right-hand side of eqn. 9 is a system invariant for the constant 
voltage, current and mean temperature modes. 

The choice of regulation mode imposes an additional constraint on eqns. 6 and 
7, and determines the exact values of St, and 6t,. In the constant voltage (CV) mode a 
decrease in conductivity 6J causes an increase in the temperature (and resistance) of 
the sample filament by an amount at,. Because the voltage across the bridge is con- 
stant, the current through the sample and reference filament must, therefore, be 
reduced. This results in a decrease in the reference filament temperature by at,. The 
sum of these changes, 6t, + 6t,, is given in eqn. 9 by H. In the constant current (CC) 
mode no change occurs in the reference filament; thus dt, = 0 and, therefore, 6t, = H. 

In the constant mean temperature (CM) mode the power applied to the bridge is 
varied as 6J changes in such a way that the equivalent resistance (“mean resistance”) 
of the bridge remains constant. This implies that 6t, = at, s 6t. Thus 26t = H. 

If the response is defined as the imbalance in the bridge E (Fig. l), then in the 
constant current mode 

EC, = i (R, - R,) (104 

= iR, {[l + ~.(t + &,>] - (1 + it)) (lob) 

= iR,r6t, (104 

Using eqn. 9 and the fact that 6r, = H, the result is 
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EC, = i R,uH (1W 

For the constant voltage mode, assuming the same initial conditions and current, the 
response is 

EC, = (i - Sic,) (R, - R,) (114 

= (i - 6i,,) R, {[I + sc(t + sr,)] - [1 + ,r(t - st,)]} (llb) 

= i R, n(ht, + 62,) - R,ac%,, (dt, + dt,) (llc) 

where Sic, is the decrease in bridge current due to the presence of sample. If the 
higher order terms in 6 are neglected, the result is 

E cv = i R,rH (114 

Similarly, for the constant means temperature mode one obtains 

E CM = (i - Sic,) (R, - R,) (124 

= (i - Si,,) R, {[ 1 + sc(t + at)] - [1 + sl(t - &)I} (12b) 

= iR,x26t - R,r26t Si,, (12c) 

= i R,ctH (124 

Thus, the sensitivity (S = E/SJ) is equivalent for all three modes of operation, 
provided that the temperature and current changes remain small. The noise sources 
should also be the same. Therefore, the signal-to-noise ratio (and detectivity) must 
also be identical. The response can be expressed in alternative forms: 

E= 

or 

(134 

The latter expression is similar to one derived by Wittebrood4 and othersle3, with the 
exception of the last term, which occurs because the usual approximation of 6t, = 0 
was not used here. This correction term has a typical value of 1.1-1.2. 
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SENSITIVITY FOR CONSTANT TEMPERATURE OPERATION 

The constant temperature mode of operation is shown in Fig. 2. The bridge 
generally consists of a single active filament R, with a passive load resistance R, on 
one side of the bridge with balance resistances R, and R, on the other side. The 
balance resistances are much larger than R, or R, and therefore draw negligible 
current from the power supply. The supply voltage V is decreased by 6 V in response 
to a decrease 6J in conductivity so that R, remains constant. The power balance 
equation is again given by eqn. 4. Using the relationship 

i = V/[RL + R, (1 + cct)] (14) 

yields 

v2 = (RL + R,)’ J(t - L) 
RL 

where 

R, = R, (1 + at) 

For a small change 6J in eqn. 15, the corresponding change 6 V is 

2v6v = 6J (4 + 4)’ (r - L) 
Rl_ 

6v _ i&r (4 + R,) 
J’ 2 

As 6J is small, J = Jo - 6J 2 Jo, and 

Fig. 2. Constant temperature bridge configuration. 

(15) 

(16) 

(174 

(1% 
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(17c) 

If& = 1 R,( = 1 R, (1 + &)I, then 

6V = iRo+(l + at) (18) 
0 

Comparison of eqn. 18 with eqn. 13a shows that the CT mode has higher sen- 
sitivity than the other three because the term in the denominator of eqn. 13a has values 
ranging from 7 to 10. This is not meant to imply, however, that the detectivity or 
signal-to-noise ratio is any better. 

CONSTANT MEAN TEMPERATURE MODE --OUTER BRIDGE 

The large disparity in sensitivity between the CT and CM modes is anomalous 
and exists in part because the response in the CT mode is taken to be the change in 
applied bridge voltage 6 V (Fig. 2); where as in the CM mode it is usually taken within 
the bridge E (Fig. 1). Consider an alternative method of measuring the response in the 
CM mode. Let the active filament R, in Fig. 2 be replaced by the four-filament bridge 
of Fig. 1. This becomes the control circuit for the CM mode. However, instead of 
using E as a measure of the response let us use 6 V. This will be referred to as the outer 
bridge configuration. The change 6 V is given by: 

6V = 262’ (RL + RB) (19) 

where R, is the equivalent resistance of the four-filament sensing bridge. The factor 2 
arises because 6i as defined previously as the change in current on only one side of the 
bridge in Fig. 1. Eqns. 6 and 7 still apply with 6t, = St,. Using eqn. 7 the current 
change Si is found to be 

di=i- 
Jo (t - 6t - t,) 1’2 

R, [l + cr(t - st)] 
(20) 

Using eqn. 4 and letting J = Jo, as i is the current when 6J = 0, we obtain 

Rearranging terms yields 

6i = KY: I :;)]12{l - [1 - &y’2 [, _ ,::“:!‘:3 
(22) 

Expanding the square root terms and neglecting the higher order terms in St results in 
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Neglecting the higher order terms in ht gives 

Therefore, eqn. 19 becomes 

[ 

1 
6V=2i(R,+R,) (t- 

!I 6t l- (l+rt) 2 

As 6t = H/2 from eqn. 9, then 

sv = SJ (RL + RB) 1 r i._. (t - 4v> 
JO 2 (t - (1 + cd) * _ dt - td 1 

(1 + at) 

(26a) 

sv = iSJ CR,_ + RB) 1 u(t - t,) 

JCI 2 1 _ 4t - t,) - (1 + at) - a(t - t,) 1 
(1 + rt) 

(26b) 

sv = (26~) 

Comparison with eqn. 17c shows that the CT mode has the same sensitivity as the 

7 

(23) 

(24) 

(25) 

CM mode when the response is measured at the same place in the bridge circuit. The 
noise sources for these two modes are not necessarily the same, even if the circuit 
elements are the same (i.e., RB = R,, and the same amplifiers are used in the feedback 
control loop and signal output stages). Because of the higher bridge current in the 
CM mode, its noise will be greater than that in the CT mode, when measured in the 
outer bridge configuration. 

COhh’ARISON OF SIGNAL-TO-NOISE RATIO 

Although a comparison of the sensitivities in the various operating modes can 
be made without regard to the details of the electronics, the same cannot be done for 
the noise sources. However, some general statements can be made that allow an 
ordering of signal-to-noise ratios for the various modes. 

In the CM, CV and CC modes, the bridge (Fig. 1) efficiently rejects power 
supply noise as it is common to both sides of the bridge and appears at both inputs 
to the signal amplifier (E, Fig. 1). The dominant noise at the output of the signal 
amplifier will consist of shot noise at the input stage and flow-induced temperature 
fluctuations of the sensing filaments. These same noise sources are present in the CT 
mode. In addition, the power supply requires a high gain feedback loop with a higher 
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bandwidth for stability of the constant temperature system, in order to respond fast 
enough to keep the temperature of the filament constant. This means that noise from 
the filament or any other part of the feedback loop will be amplified and will appear 
at one input to the signal amplifier (6V, Fig. 2). This noise will not be rejected since 
it is not common to both inputs to the signal amplifier. Also noise from the reference 
supply (Fig. 2) likewise is not rejected because it appears at only one input. Therefore, 
even if the measurement bandwidth is the same, the noise equivalent bandwidth for 
the CT mode will be significantly larger. Generally the signal-to-noise ratio for the 
CT mode is less than the CM. CV or CC modes. 

LINEAR RANGE 

At low sample concentrations all four modes provide a linear response due to 
the direct proportionality between &J/J,, and the molar fraction of the sample, X, 
which has been shown by Lindsay and Bromley’ to be 

J2x ‘/&I., 
J* ( 1 A,B 

(27) 

where 

Al = conductivity of carrier gas; 

A2 = conductivity of sample; 

A, B = constants. 

At higher concentrations not only does eqn. 27 fail, but so do the approximations that 
were made in eqns. 2, 3 and 4. When the change in filament temperature is no longer 
negligible, then the alternative heat loss terms Q,, and Q,, must be considered. Under 
these circumstances an explicit form for the response cannot be found. Therefore, a 
numerical model based on eqn. 1 was developed and used to determine the response 
in different modes of operation. 

Explicit functional forms for Q,, and Q,, were found by experimentally 
measuring these quantities independently and fitting them to a function. The heat loss 
by conduction and radiation was determined by measuring the power into the bridge 
as a function of filament temperature, in an evacuated cell. These data were then least 
square fit to an equation of the form 

Q,, = B,, At 0 < At d t,,, (;8a) 

Q,, = A,, + B;, At + Cc, At= t max < At (28b) 

where At = t - t,. For small changes in At only eqn. 28a is important, which is of the 
form of eqn. 2, where k, = B,,. This form was chosen because lim Q,, = 0. The 

r-f 
quadratic term when t > t,,, 

x 
is due to radiation losses, whereas the linear terms are 

due to conduction through the ends of the filaments. The additional constraint that 
the slopes of Q,, at t,,, are the same was imposed to make Q,, a smooth function. 

The specific form for Q,, was taken to be: 

Q,, = F j’o C,,(t, X)dt (29) 
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where 

F = molar flow-rate at t,; 
C, = heat capacity of the gas mixture; 
t, = temperature of gas leaving cell. 

The heat capacity of the mixture was approximated by 

c, = c,, (1 - x) + c,,x (30) 

where 

C,,r = heat capacity of carrier gas as a function of temperature; 

C,, = heat capacity of sample as a function of temperature. 

The temperature of the gas leaving the cell was approximated by 

t, = t, + A t + B t2 (31) 

where 

A = A, + A,X + A,P (324 

B = B, + B,X + B,.u2 (32b) 

and X is the molar fraction of sample. As t, 5 t,, eqn. 29 can be replaced by 

Q,, = F(AAt + BAt’)C, (33) 

For small changes in F and At the quadratic term can be neglected and eqn. 33 
reduces to eqn. 3 with k, = FAC,. 

As the amount of heat transferred to the gas is a complicated function of flow 
dynamics and cell geometry, the data used to find the constants in eqn. 32 were 
obtained by measuring the bridge imbalance as a function of flow, when a constant 
concentration of sample flowed through all four elements of the bridge. This was 
done for different concentrations of sample and for several filament temperatures. 

The geometric factor in eqn. 1 was taken to be 

2nL 
G=- 

ln(r,lrd 

where 

L = length of filament 

r&V = radius of cell wall 

rr = radius of filament 
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TABLE I 

CONSTANTS USED IN CALCULATIONS 

B,, = 1.006. lO-3 J/oC 
A,, = 4.332. 1O-6 J 
X,, = 9.973. IO-“ Ji”C 
C,, = 2.166. IO-’ J/(“Q2 
t msr = 20°C 
C,, = 4.96 cal/“C 
C,, = 13.22 cal/“C 
A, = 2.079. IO-’ 
A, = 1.357.10-’ 
A, = 2.721.10-’ 
B, = 3.938 lo-5 
B, = l.045.10-4 
B2 = 5.139. lo-6 

tl = 3.3’ 10e3 ohm/‘C 
R, = 29.41 ohm 
L = 13.8 mm 
r, = 1.27 mm 
rr = 0.23 mm 
,I, = 422.08. lO-6 cal/(sec)(cm2)(“C/cm) 
A, = 60.55. 10m6 cal/(sec)(cm’)(‘C/cm) 
A = 4.0 
B = 0.6 
C,, = 341.1 10e6 cal;(sec)(cm”)(“C/cm) 

C,, = -7.674. 10m5 K 
C,, = 57.2. IO-’ cal;(sec)(cm’)(‘Cjcm) 
C,, = -2.213. 1O-5 K 

The conductivity term was fitted to the equation given by Chapman and Cowling’: 

A= 4 
1 + /4(X/I - X) + I + R&- x)/X) 

The constants A and B were determined from the response of the bridge operated in 
the CM mode, where it was assumed that an increase in the filament temperature did 
not cause a significant change in Q,, and Q,,. This is a valid approximation as the 
constants A and B were found to be only weak functions of temperature. The tem- 
perature dependence of i, and A2 followed the form given by Benson’ for gas 
viscosity: 

cli 

n(r), = 1 + C,,/T 

(100°K < T < SOO’K), where C, and C, are constants. 

2.0 

0.0’ 
I I I I I 

1.0 2.0 3.0 4.0 5.0 c 
LOG CONCENTRATION IN PPM 

(36) 

I 

Fig. 3. Relative sensitivity w-sus concentration for butane in helium. (---) Constant temperature; - --, 
constant mean temperature; ., constant voltage; mPm-, constant current. 
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Fig. 4. Thermal conductivity cell. 

RESULTS OF MODEL 

The model developed here allows the independent choice oft,, L, r,, rf and R, 

for each of the four filaments, as well as different flows for the sample and reference 
sides of the bridge. Using the constants described in the previous section that were 
determined for butane in helium as carrier gas, the sensitivities in the four modes were 
calculated. Here the sensitivity is defined to be S = E/C, where C is the sample 
concentration. The constants used in the calculations are listed in Table I. The results 
are shown in Fig. 3 for an initial temperature t = 170°C and t, = 120°C. These are 
calculated results and were found to agree with the measured data to within a few 
percent across the entire concentration range. Currents from 80 to 150 mA (160-300 
mA total bridge current) were investigated. The relative sensitivities for the different 
modes were found to be unchanged throughout the range of currents, except for the 
CC mode, which showed a slight shift in the maximum towards lower concentration 
at higher currents. The cell (Fig. 4) used for these studies was a Varian 3700 thermal 
conductivity detector’. It can be seen that the CV mode provides significantly better 
linearity than either the CT, CC or CM modes. It is interesting that there is no 

0.0 I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 
LOG CONCENTRATION IN PPM 

Fig. 5. Sensitivity for constant temperature mode. ---, Q,,,.; ‘, Pm + Qu: m---> Qm. + Qc, + Qm,. 
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Fig. 6. Sensitivity for constant mean temperature mode. - --. Q,,,,,; ‘3 Q,,. + Q,,; m--, Q,,. + Q,, + 
Q,,. 

positive curvature in either the CT or CV modes as was predicted by Wittebrood4, 
who neglected the change in Q,, and Q,, that occurs at high sample concentrations. 

The advantage of the numerical model is that the importance of each heat loss 
mechanism may be independently observed. Figs. 5-8 show calculated sensitivities for 
the different modes of operation. In each calculation the effect of including the dif- 
ferent heat loss terms Q,,,, Q,, and Q,, can be seen. The heat loss by mass transport is 
relatively unimportant in affecting the sensitivity at high concentrations, in all modes. 
The effect of heat loss by conduction and radiation (primarily conduction), however, 
significantly changes the sensitivity at higher concentrations for the CV and CC 
modes. The importance of this effect is most dramatic in the CV mode (Fig. 7) where 

I I I I I I 
1.0 2.0 3.0 4.0 5.0 6.0 

LOG CONCENTRATION IN PPM 

Fig. 7. Sensitivity for constant voltage mode. ~~- -_ Q,..; ..., Q,,,, + Q,,; ----, Qson + Q,, + Q,,. 
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0.0 I I I I I 
1.0 2.0 3.0 4.0 5.0 6 0 

LOG CONCENTRATION IN PPM 

Fig. 8. Sensitivity for constant current mode. ---. Q,,,; ‘, Q,.. + Q,G ~~ . 8,“. + Q,r + Q,, 

the sensitivity curves up when Q,, is not included and curves down when it is. This 
implies that by optimizing the heat loss Q,, the linear range can be extended. 

The change in linear response at concentrations beyond 1 ‘Pi is the result of 

increases in the sample filament temperatures (Fig. 9) and decreases in the bridge 
current (Fig. IO). The differences between the various modes of operation are due to 
the different magnitudes of changes in filament temperature and current. These dif- 
ferences are the result of the variation in the power into the filaments and the change 
in the distribution of power dissipation between Q,,,, and Q,,. For example, the power 
into the sample filament in the CM mode decreases at higher concentrations (Fig. 1 I), 
while the dissipation by Q,, remains almost unchanged. In the CV mode however, the 

^ 200.0 
00 1 

d 
Y NC 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
LOG CONCENTRATION IN PPM 

Fig. 9. Effect of sample filament temperature increase. ---, Constant mean temperature; ‘. . . ., constant 
voltage; ~~ . constant current. 
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o.ot-----J 1.0 2.0 3.0 4.0 5.0 6.0 

LOG CONCENTRATION IN PPM 

Fig. 10. Sample filament current. -----. Constant current; ‘1 constant voltage; -- -, constant mean tem- 
perature; ---, constant temperature. 

power into the sample filament remains almost constant (Fig. 12) while the dissipa- 
tion by Q,, increases significantly at higher concentrations owing to the increased 
temperature of the filament. When the concentration approaches 100 %, the dissipa- 
tion Q,, exceeds that of QGO,. In the examples discussed here, this corresponds to a 
sample filament temperature increase of approximately 120°C. 

The coefficient B in eqn. 28 is directly related to the thermal conductivity 
coefficient for heat transfer through the ends of the filament. In the CV mode the cell 
used for the measurements became non-linear at a concentration of approximately 
26 % (non-linear is defined as the concentration at which the sensitivity changes by 

“._ 

, . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0.4 - 

Fo.3 - 

i _ 
ce 

ro.2- 

: 

‘. 

0.1 L 

------------_--~_c-- 
/-- 

o.oL I I I I I 

1.0 2.0 3.0 4.0 5.0 e 
LOG CONCENTRATION IN PPM 

i 
i.( 

Fig. 1 I. Power in sample filament (constant mean mode). 

---3 Q,,. 
mm-) Power into filament; ., Q,,.; ---, Q,,; 
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Fig. 12. Power in sample filament (constant voltage mode). ----, Power into filament; ., Q,““; ---, Q,,; 

---, Q,,. 

5 %). If the conductivity (B in eqn. 28) could be reduced to half, calculations indicate 
that the response would be linear to approximately 45 O/, sample concentration at the 
detector. 

CONCLUSION 

It has been shown that on the basis of signal-to-noise ratio there is no dif- 
ference between constant voltage, current or mean temperature modes of operation. 
The constant temperature mode will usually have a poorer signal-to-noise ratio be- 
cause of the noise. The data presented here show that the constant voltage mode 
provides the best linear range. In addition, thedecrease in sensitivity at concentrations 
greater than about 5% can be optimized by a proper choice of heat conduction 
through the ends of the filament, for any given cell geometry factor G. The improved 
linear response occurs at the expense of a significant increase in filament temperature 
at the higher concentrations. When high initial filament temperatures are used, 
damage may result from accidental air leaks unless some additional mechanism exists 
to limit the maximum filament temperature. 
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